Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
1.
Open Biol ; 14(4): 230383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629124

RESUMO

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Assuntos
Epilepsia , Protocaderinas , Camundongos , Animais , Adesão Celular , Encéfalo , Epilepsia/metabolismo , Neurônios/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612920

RESUMO

X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.


Assuntos
Epilepsia , Espasmos Infantis , Feminino , Humanos , Genes Ligados ao Cromossomo X , Epigênese Genética , Genes cdc , Epilepsia/genética , Receptor de Pró-Renina , Protocaderinas , Fatores de Troca do Nucleotídeo Guanina , Fatores de Troca de Nucleotídeo Guanina Rho , N-Acetilglucosaminiltransferases
3.
Funct Integr Genomics ; 24(2): 35, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368303

RESUMO

Protocadherin 8 (PCDH8), a calcium-dependent transmembrane protein in the protocadherin family, regulates cell adhesion and signal transduction. While some studies have provided indirect evidence that PCDH8 has cancer-promoting properties, this association is controversial. In particular, its involvement in thyroid cancer (THCA) remains unclear. We aimed to elucidate the role of PCDH8 in THCA using bioinformatic analysis. Subsequently, the results were experimentally validated. The analysis conducted using the R programming language and online web tools explored PCDH8 expression levels, prognostic, and clinical implications, and its relationship with the tumor immune microenvironment in THCA. Furthermore, we examined the association between PCDH8 and co-expressed genes, highlighting their involvement in several biological processes relevant to THCA. The potential of PCDH8 as a therapeutic target for this pathology was also explored. Immunohistochemical (IHC) staining was performed on samples from 98 patients with THCA, and experimental validation was carried out. PCDH8 was significantly elevated in cancer tissues and associated with poor prognosis, several clinical factors, and immune cell and checkpoint abundance. Cox regression and survival analyses, together with Receiver Operating Curves (ROC) indicated that PCDH8 was an independent prognostic factor for THCA. Furthermore, PCDH8 impacts cell viability and proliferation, promoting tumorigenesis. Also, it influences tumor cell sensitivity to various drugs. Thus, PCDH8 might be a potential therapeutic target for THCA. IHC, cell culture, MTT, and colony formation experiments further confirmed our findings. This analysis provided insights into the potential carcinogenic role of PCDH8 in THCA, as it impacts cell viability and proliferation. Thus, PCDH8 might play an important role in its prognosis, immune infiltration, and diagnosis.


Assuntos
Protocaderinas , Neoplasias da Glândula Tireoide , Humanos , Prognóstico , Neoplasias da Glândula Tireoide/genética , Proliferação de Células , Carcinogênese , Biomarcadores , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 121(6): e2313596120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285948

RESUMO

Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.


Assuntos
Interneurônios , Protocaderinas , Camundongos , Animais , Humanos , Interneurônios/fisiologia , Neurônios/metabolismo , Apoptose/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Córtex Cerebral/fisiologia
5.
Mol Biol Cell ; 35(3): ar36, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170579

RESUMO

Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.


Assuntos
Células Epiteliais , Protocaderinas , Microvilosidades/metabolismo , Células Epiteliais/metabolismo
6.
STAR Protoc ; 5(1): 102844, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277267

RESUMO

cIPAD is a fluorescent indicator that allows the visualization of trans-interactions of clustered protocadherin (Pcdh), a cell adhesion molecule that mediates neuronal self-recognition. We describe steps for using HEK293T cells to visualize Pcdh trans-interactions across cells as a preliminary experiment before using dissociated mouse neurons. We then detail procedures for visualizing Pcdh trans-interactions between processes originating from the same neurons, which are considered as Pcdh-mediated neuronal self-recognition. For complete details on the use and execution of this protocol, please refer to Kanadome et al.1.


Assuntos
Caderinas , Protocaderinas , Humanos , Animais , Camundongos , Caderinas/genética , Caderinas/metabolismo , Células HEK293 , Neurônios/metabolismo , Adesão Celular
7.
Transl Psychiatry ; 14(1): 65, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280856

RESUMO

Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.


Assuntos
Caderinas , Epilepsia , Humanos , Caderinas/genética , Protocaderinas , Multiômica , Proteômica , Epilepsia/genética , Análise por Conglomerados
8.
Transl Psychiatry ; 14(1): 35, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238304

RESUMO

Protocadherin-19 (PCDH19) developmental and epileptic encephalopathy causes an early-onset epilepsy syndrome with limbic seizures, typically occurring in clusters and variably associated with intellectual disability and a range of psychiatric disorders including hyperactive, obsessive-compulsive and autistic features. Previous quantitative neuroimaging studies revealed abnormal cortical areas in the limbic formation (parahippocampal and fusiform gyri) and underlying white-matter fibers. In this study, we adopted morphometric, network-based and multivariate statistical methods to examine the cortex and substructure of the hippocampus and amygdala in a cohort of 20 PCDH19-mutated patients and evaluated the relation between structural patterns and clinical variables at individual level. We also correlated morphometric alterations with known patterns of PCDH19 expression levels. We found patients to exhibit high-significant reductions of cortical surface area at a whole-brain level (left/right pvalue = 0.045/0.084), and particularly in the regions of the limbic network (left/right parahippocampal gyri pvalue = 0.230/0.016; left/right entorhinal gyri pvalue = 0.002/0.327), and bilateral atrophy of several subunits of the amygdala and hippocampus, particularly in the CA regions (head of the left CA3 pvalue = 0.002; body of the right CA3 pvalue = 0.004), and differences in the shape of hippocampal structures. More severe psychiatric comorbidities correlated with more significant altered patterns, with the entorhinal gyrus (pvalue = 0.013) and body of hippocampus (pvalue = 0.048) being more severely affected. Morphometric alterations correlated significantly with the known expression patterns of PCDH19 (rvalue = -0.26, pspin = 0.092). PCDH19 encephalopathy represents a model of genetically determined neural network based neuropsychiatric disease in which quantitative MRI-based findings correlate with the severity of clinical manifestations and had have a potential predictive value if analyzed early.


Assuntos
Encefalopatias , Transtornos Mentais , Humanos , Convulsões , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Transtornos Mentais/genética , Expressão Gênica , Caderinas/genética , Protocaderinas
9.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
10.
J Microbiol Biotechnol ; 34(2): 457-466, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044713

RESUMO

Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.


Assuntos
Desidrogenases de Carboidrato , Cellulomonas , Cellulomonas/genética , Cellulomonas/metabolismo , Celobiose/metabolismo , Lactose , Açúcares Ácidos , Espectroscopia de Infravermelho com Transformada de Fourier , Protocaderinas
11.
Dev Med Child Neurol ; 66(2): 195-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37482918

RESUMO

AIM: To describe the experiences and unmet medical care needs of a group of parents of children with developmental and epileptic encephalopathies (DEEs) caused by the SCN1A, KCNQ2, CDKL5, PCDH19, and GNAO1 variants. METHOD: A qualitative descriptive study was conducted. Participants were recruited using purposeful sampling. The inclusion criteria consisted of parents of children with DEEs caused by the SCN1A, KCNQ2, CDKL5, PCDH19, or GNAO1 variants, aged between 4 and 10 years old. In total, 21 parents were included. Data were acquired via researcher field notes and in-depth interviews. A thematic analysis was performed. RESULTS: Three main themes were identified: (1) managing symptoms: epileptic seizures are experienced with great uncertainty and are accompanied by cognitive, behavioural, and motor symptoms; (2) accepting treatment: the ideal medication regimen is a challenge and the decision to withdraw or start a new therapy falls on the parents; and (3) therapeutic relationship and medical care: behaviours related to the health professional can hinder the therapeutic relationship with the parents. Parents are apprehensive about going to the emergency department. INTERPRETATION: Professionals in emergency departments should acquire better knowledge of DEEs, welcome parents, and improve treatment for the children. The results of this study can serve as a starting point for a roadmap of relevant caregiver-reported outcomes in DEEs, to be implemented with new clinical trials and aetiology-targeted therapies. WHAT THIS PAPER ADDS: Epileptic seizures are the symptom that is most experienced and feared by parents. The medication regime has no defined protocol and the decision to withdraw a medication is frequently left to parents.


Assuntos
Epilepsia , Criança , Humanos , Pré-Escolar , Epilepsia/genética , Epilepsia/terapia , Convulsões/genética , Atenção à Saúde , Pais/psicologia , Protocaderinas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP
12.
Mol Genet Genomic Med ; 12(1): e2338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38083988

RESUMO

BACKGROUND: Developmental and epileptic encephalopathy 9 (DEE9) is characterized by early infantile seizures and mild-to-severe neuropsychiatric symptoms. Despite being an X-linked dominant disorder, DEE9 mainly affects heterozygous females or mosaic males, while hemizygous males are less affected. PCDH19 gene has been documented as the causative gene. METHODS: Karyotyping analysis and copy number variation sequencing (CNV-seq) were performed on a pregnant woman with epilepsy, together with her husband, son, and fetus. RESULTS: A disease-causing microdeletion, seq[GRCh37] del(X)(q21.31q22.1) (90310001-100360000), was identified in the pregnant woman and her female fetus. The microdeletion includes the entire PCDH19 gene and is classified as "pathogenic" according to the American College of Medical Genetics and Genomics guidelines. CONCLUSION: In this case study, we have not only identified the epilepsy type of the woman as DEE9 but have also made an unfavorable prognosis for her fetus. Our findings from this prenatal case provide valuable clinical resources for prenatal diagnosis and genetic counseling, while also implying the potential of CNV-seq as a viable method for uncovering PCDH19-related epilepsy.


Assuntos
Epilepsia Generalizada , Feminino , Humanos , Gravidez , Variações do Número de Cópias de DNA , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Mães , Mutação , Diagnóstico Pré-Natal , Protocaderinas
13.
Medicine (Baltimore) ; 102(49): e36291, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065896

RESUMO

TNFAIP8L1, as a recently identified member in TNFAIP8 family, plays an important role in tumorigenesis. However, a pan-cancer analysis of TNFAIP8L1 in human tumors has not been conducted until now. The main purpose of study is to investigate TNFAIP8L1 during 33 different types of human tumors by using TCGA and GTEx. The pan-cancer analysis showed that TNFAIP8L1 was significantly over-expressed in 15 cancers and low-expressed in 9 cancers. There were distinct relations between TNFAIP8L1 expression and prognosis of patients with cancer. Furthermore, we also found that DNA methylation and RNA modification of TNFAIP8L1 were associated with many cancers. And then, we detected that TNFAIP8L1 level was positively associated with cancer-associated fibroblasts (CAFs) in many tumors. And, we obtained that TNFAIP8L1 expression was related with most of immune inhibitory and stimulatory genes in multiple types of tumors. We also found TNFAIP8L1 expression was correlated with most of chemokine, receptor, MHC, immunoinhibitor and immunostimulator gens in most of cancers. Moreover, we detected TNFAIP8L1 expression was associated with TMB and MSI in several tumors. Finally, TNFAIP8L1 gene had a significant positive association with 5 genes including BCL6B, DLL4, PCDH12, COL4A1 and DLL4 in the majority of tumors. GO enrichment and KEGG pathway analyses showed that TNFAIP8L1 in thepathogenesis of cancer may be related to "purine nucleoside binding," "purine ribonucleoside binding," "ECM-receptor interaction," etc. Our first pan-cancer study may provide a deep comprehending of TNFAIP8L1 in tumoeigenesis from different tumors.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Carcinogênese , Transformação Celular Neoplásica , Metilação de DNA , Neoplasias/genética , Protocaderinas
14.
Epilepsy Behav ; 149: 109517, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956604

RESUMO

PCDH19 is a common epilepsy gene causing medication resistant epilepsy with fever-related seizures. Traditionally, patients with PCDH19-related epilepsy have not been considered surgical candidates. This retrospective review evaluated three patients with pathogenic variants in PCDH19 who presented with seizures in childhood, had one seizure semiology, became medication resistant, and had concordant imaging, seizure semiology and electrographic findings. All three patients ultimately underwent temporal lobectomy, resulting in seizure freedom. These findings suggest epilepsy surgery can be an effective treatment option for select patients with PCDH19-related epilepsy and a single seizure semiology.


Assuntos
Epilepsia , Convulsões Febris , Humanos , Caderinas/genética , Protocaderinas , Epilepsia/genética , Epilepsia/cirurgia , Convulsões/genética , Estudos Retrospectivos
15.
BMC Cancer ; 23(1): 1102, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957639

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is an aggressive solid tumour characterised by few early symptoms, high mortality, and lack of effective treatment. Therefore, it is important to identify new potential therapeutic targets and prognostic biomarkers of PAAD. METHODS: The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify the expression and prognostic model of protocadherin 1 (PCDH1). The prognostic performance of risk factors and diagnosis of patients with PAAD were evaluated by regression analysis, nomogram, and receiver operating characteristic curve. Paraffin sections were collected from patients for immunohistochemistry (IHC) analysis. The expression of PCDH1 in cells obtained from primary tumours or metastatic biopsies was identified using single-cell RNA sequencing (scRNA-seq). Real-time quantitative polymerase chain reaction (qPCR) and western blotting were used to verify PCDH1 expression levels and the inhibitory effects of the compounds. RESULTS: The RNA and protein levels of PCDH1 were significantly higher in PAAD cells than in normal pancreatic ductal cells, similar to those observed in tissue sections from patients with PAAD. Aberrant methylation of the CpG site cg19767205 and micro-RNA (miRNA) hsa-miR-124-1 may be important reasons for the high PCDH1 expression in PAAD. Up-regulated PCDH1 promotes pancreatic cancer cell metastasis. The RNA levels of PCDH1 were significantly down-regulated following flutamide treatment. Flutamide reduced the percentage of PCDH1 RNA level in PAAD cells Panc-0813 to < 50%. In addition, the PCDH1 protein was significantly down-regulated after Panc-0813 cells were incubated with 20 µM flutamide and proves to be a potential therapeutic intervention for PAAD. CONCLUSION: PCDH1 is a key prognostic biomarker and promoter of PAAD metastasis. Additionally, flutamide may serve as a novel compound that down-regulates PCDH1 expression as a potential treatment for combating PAAD progression and metastasis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Prognóstico , Flutamida , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , RNA , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Protocaderinas , Neoplasias Pancreáticas
16.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003275

RESUMO

Maternal hyperglycemia, induced by gestational diabetes mellitus (GDM), has detrimental effects on fetal vascular development, ultimately increasing the risk of cardiovascular diseases in offspring. The potential underlying mechanisms through which these complications occur are due to functional impairment and epigenetic changes in fetal endothelial progenitor cells (EPCs), which remain less defined. We confirm that intrauterine hyperglycemia leads to the impaired angiogenic function of fetal EPCs, as observed through functional assays of outgrowth endothelial cells (OECs) derived from fetal EPCs of GDM pregnancies (GDM-EPCs). Notably, PCDH10 expression is increased in OECs derived from GDM-EPCs, which is associated with the inhibition of angiogenic function in fetal EPCs. Additionally, increased PCDH10 expression is correlated with the hypomethylation of the PCDH10 promoter. Our findings demonstrate that in utero exposure to GDM can induce angiogenic dysfunction in fetal EPCs through altered gene expression and epigenetic changes, consequently increasing the susceptibility to cardiovascular diseases in the offspring of GDM mothers.


Assuntos
Doenças Cardiovasculares , Diabetes Gestacional , Células Progenitoras Endoteliais , Hiperglicemia , Gravidez , Feminino , Humanos , Diabetes Gestacional/metabolismo , Células Progenitoras Endoteliais/metabolismo , Feto/metabolismo , Hiperglicemia/metabolismo , Protocaderinas
17.
eNeuro ; 10(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37890993

RESUMO

Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.


Assuntos
Parvalbuminas , Protocaderinas , Camundongos , Feminino , Masculino , Animais , Parvalbuminas/metabolismo , Potenciais Pós-Sinápticos Inibidores , Células Piramidais/fisiologia , Córtex Cerebral/metabolismo , Interneurônios/metabolismo
18.
J Neurosci ; 43(49): 8348-8366, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37821230

RESUMO

The clustered protocadherins (cPcdhs) play a critical role in the patterning of several CNS axon and dendritic arbors, through regulation of homophilic self and neighboring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial signals with appropriate fidelity. Here, we show that members of the γ-Pcdh (Pcdhγ) family are expressed in both adult sensory neuron axons and in neighboring keratinocytes that have close interactions during skin reinnervation. Adult mice of both sexes were studied. Pcdhγ knock-down either through small interfering RNA (siRNA) transduction or AAV-Cre recombinase transfection of adult mouse primary sensory neurons from floxed Pcdhγ mice was associated with a remarkable rise in neurite outgrowth and branching. Rises in outgrowth were abrogated by Rac1 inhibition. Moreover, AAV-Cre knock-down in Pcdhγ floxed neurons generated a rise in neurite self-intersections, and a robust rise in neighbor intersections or tiling, suggesting a role in sensory axon repulsion. Interestingly, preconditioned (3-d axotomy) neurons with enhanced growth had temporary declines in Pcdhγ and lessened outgrowth from Pcdhγ siRNA. In vivo, mice with local hindpaw skin Pcdhγ knock-down by siRNA had accelerated reinnervation by new epidermal axons with greater terminal branching and reduced intra-axonal spacing. Pcdhγ knock-down also had reciprocal impacts on keratinocyte density and nuclear size. Taken together, this work provides evidence for a role of Pcdhγ in attenuating outgrowth of sensory axons and their interactions, with implications in how new reinnervating axons following injury fare amid skin keratinocytes that also express Pcdhγ.SIGNIFICANCE STATEMENT The molecular mechanisms and potential constraints that govern skin reinnervation and patterning by sensory axons are largely unexplored. Here, we show that γ-protocadherins (Pcdhγ) may help to dictate interaction not only among axons but also between axons and keratinocytes as the former re-enter the skin during reinnervation. Pcdhγ neuronal knock-down enhances outgrowth in peripheral sensory neurons, involving the growth cone protein Rac1 whereas skin Pcdhγ knock-down generates rises in terminal epidermal axon growth and branching during re-innervation. Manipulation of sensory axon regrowth within the epidermis offers an opportunity to influence regenerative outcomes following nerve injury.


Assuntos
Regeneração Nervosa , Protocaderinas , Masculino , Feminino , Camundongos , Animais , Regeneração Nervosa/fisiologia , Axônios/fisiologia , Células Receptoras Sensoriais/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
19.
Rev Assoc Med Bras (1992) ; 69(10): e20230547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37820178

RESUMO

OBJECTIVE: Childhood epilepsy is a common neurological disorder with a prevalence of 300-600 cases per 100,000 people. It is associated with refractory epilepsies, global developmental delay, and epileptic encephalopathies, causing epileptic syndromes characterized by cognitive and behavioral disorders. METHODS: In this retrospective cohort study, patients with refractory epilepsy and global developmental delay, defined as epileptic encephalopathy, who applied to the Aydin 7Maternity and Children's Hospital Genetic Diagnosis Center and were followed in the pediatric neurology clinic of our hospital, between July 2018 and July 2021, were included. RESULTS: Targeted next-generation sequencing molecular genetics results were reviewed, and 3 ALDH7A1, 1 AARS, 3 CACNA1A, 1 CTNNB1, 1 DCX, 2 DBH, 2 DOCK7, 1 FOLR1, 2 GABRB3, 2 GCH1, 1 VGRIN2B, 1 GUF1, 3 KCNQ2, 2 KCNT1, 1 NECAP1, 1 PCDH19, 1 PNPO, 1 SCN8A, 1 SCN9A, 4 SCN1A, 2 SLC25A22, 1 SLC2A1, 2 SPTAN1, 2 SZT2, 4 TBC1D24, 2 TH, and 1 PCDH19 (X chromosome) mutations were detected in three of the patients using the next-generation sequencing method. CONCLUSION: Although the development of gene panels aids in diagnosis, there are still unidentified disorders in this illness category, which is highly variable in genotype and phenotype. Understanding the genetic etiology is vital for genetic counseling and, maybe, the future development of remedies for the etiology.


Assuntos
Epilepsia , Criança , Humanos , Estudos Retrospectivos , Epilepsia/genética , Genótipo , Fenótipo , Mutação , Sequenciamento de Nucleotídeos em Larga Escala , Receptor 1 de Folato/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Protocaderinas
20.
Trends Biochem Sci ; 48(12): 1044-1057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839971

RESUMO

The ability of neurites of the same neuron to avoid each other (self-avoidance) is a conserved feature in both invertebrates and vertebrates. The key to self-avoidance is the generation of a unique subset of cell-surface proteins in individual neurons engaging in isoform-specific homophilic interactions that drive neurite repulsion rather than adhesion. Among these cell-surface proteins are fly Dscam1 and vertebrate clustered protocadherins (cPcdhs), as well as the recently characterized shortened Dscam (sDscam) in the Chelicerata. Herein, we review recent advances in our understanding of how cPcdh, Dscam, and sDscam cell-surface recognition codes are expressed and translated into cellular functions essential for neural wiring.


Assuntos
Moléculas de Adesão Celular , Proteínas de Drosophila , Protocaderinas , Animais , Moléculas de Adesão Celular/metabolismo , Comunicação Celular , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Invertebrados , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...